UniSysCat Publications

  • Redox potentials elucidate the electron transfer pathway of NAD+-dependent formate dehydrogenases, B. R. Duffus, M. Gauglitz, C. Teutloff, S. Leimkühler, Journal of Inorganic Biochemistry 2024, 253, 112487–0, 10.1016/j.jinorgbio.2024.112487
  • Exploiting the full potential of cryo-EM maps, T. Bick, P. M. Dominiak, P. Wendler, BBA Advances 2024, 5, 100113–0, 10.1016/j.bbadva.2024.100113
  • Towards understanding the crystallization of photosystem II: influence of poly(ethylene glycol) of various molecular sizes on the micelle formation of alkyl maltosides, F. Müh, A. Bothe, A. Zouni, Photosynthesis Research 2024, 10.1007/s11120-024-01079-5
  • Characterization of the Bottlenecks and Pathways for Inhibitor Dissociation from [NiFe] Hydrogenase, F. Sohraby, A. Nunes-Alves, Journal of Chemical Information and Modeling 2024, 10.1021/acs.jcim.4c00187
  • Coupling CO2 Reduction and Acetyl‐CoA Formation: The Role of a CO Capturing Tunnel in Enzymatic Catalysis, J. Ruickoldt, J. H. Jeoung, M. A. Rudolph, F. Lennartz, J. Kreibich, R. Schomäcker, H. Dobbek, Angewandte Chemie International Edition 2024, 10.1002/anie.202405120
  • Coupling of the Catalytic Reactions of Formate Dehydrogenase and Hydrogenase in Solution: Insights from in situ IR Spectroscopy and Computations, A. F. T. Waffo, M. Wu‐Lu, S. Katz, S. Frielingsdorf, B. R. Duffus, J. Liedtke, S. Leimkühler, O. Lenz, K. Laun, M. A. Mroginski, I. Zebger, ChemCatChem 2024, 10.1002/cctc.202400794
  • The energy metabolism of Cupriavidus necator in different trophic conditions, M. Jahn, N. Crang, A. H. Gynnå, D. Kabova, S. Frielingsdorf, O. Lenz, E. Charpentier, E. P. Hudson, Applied and Environmental Microbiology 2024, 90, 10.1128/aem.00748-24
  • Chemoorganotrophic electrofermentation by Cupriavidus necator using redox mediators, A. Gemünde, E. Rossini, O. Lenz, S. Frielingsdorf, D. Holtmann, Bioelectrochemistry 2024, 158, 108694–0, 10.1016/j.bioelechem.2024.108694
  • Conformational and mechanical stability of the isolated large subunit of membrane-bound [NiFe]-hydrogenase from Cupriavidus necator, J. Dragelj, C. Karafoulidi-Retsou, S. Katz, O. Lenz, I. Zebger, G. Caserta, S. Sacquin-Mora, M. A. Mroginski, Frontiers in Microbiology 2023, 13, 10.3389/fmicb.2022.1073315
  • Structure of the actively translating plant 80S ribosome at 2.2 Å resolution, J. Smirnova, J. Loerke, G. Kleinau, A. Schmidt, J. Bürger, E. H. Meyer, T. Mielke, P. Scheerer, R. Bock, C. M. T. Spahn, R. Zoschke, Nature Plants 2023, 9, 987–1000, 10.1038/s41477-023-01407-y
  • Stepwise O2‐Induced Rearrangement and Disassembly of the [NiFe4(OH)(µ3‐S)4] Active Site Cluster of CO Dehydrogenase, Y. Basak, J. H. Jeoung, L. Domnik, H. Dobbek, Angewandte Chemie International Edition 2023, 10.1002/anie.202305341
  • Molecular characterization of AIFM2/FSP1 inhibition by iFSP1-like molecules, T. N. Xavier da Silva, C. Schulte, A. Nunes Alves, H. M. Maric, J. P. Friedmann Angeli, Cell Death & Disease 2023, 14, 10.1038/s41419-023-05787-z
  • pH-dependence of the Plasmodium falciparum chloroquine resistance transporter is linked to the transport cycle, F. Berger, G. M. Gomez, C. P. Sanchez, B. Posch, G. Planelles, F. Sohraby, A. Nunes-Alves, M. Lanzer, Nature Communications 2023, 14, 10.1038/s41467-023-39969-2
  • Structural Determinants of the Catalytic Ni -L Intermediate of [NiFe]-Hydrogenase, A. F. T. Waffo, C. Lorent, S. Katz, J. Schoknecht, O. Lenz, I. Zebger, G. Caserta, Journal of the American Chemical Society 2023, 145, 13674–13685, 10.1021/jacs.3c01625
  • Binding of exogenous cyanide reveals new active-site states in [FeFe] hydrogenases, M. A. Martini, K. Bikbaev, Y. Pang, C. Lorent, C. Wiemann, N. Breuer, I. Zebger, S. DeBeer, I. Span, R. Bjornsson, J. A. Birrell, P. Rodríguez-Maciá, Chemical Science 2023, 14, 2826–2838, 10.1039/D2SC06098A
  • Photoelectrochemistry of a photosystem I – Ferredoxin construct on ITO electrodes, H. Dörpholz, S. Subramanian, A. Zouni, F. Lisdat, Bioelectrochemistry 2023, 153, 108459–0, 10.1016/j.bioelechem.2023.108459
  • Coupling of formate dehydrogenase to inverse-opal ITO-PSI electrodes for photocatalytic CO2 reduction, S. Morlock, M. Schenderlein, K. Kano, A. Zouni, F. Lisdat, Biosensors and Bioelectronics: X 2023, 14, 100359–0, 10.1016/j.biosx.2023.100359
  • Evolutionary diversity of proton and water channels on the oxidizing side of photosystem II and their relevance to function, R. Hussein, M. Ibrahim, A. Bhowmick, P. S. Simon, I. Bogacz, M. D. Doyle, H. Dobbek, A. Zouni, J. Messinger, V. K. Yachandra, J. F. Kern, J. Yano, Photosynthesis Research 2023, 10.1007/s11120-023-01018-w
  • The electron–proton bottleneck of photosynthetic oxygen evolution, P. Greife, M. Schönborn, M. Capone, R. Assunção, D. Narzi, L. Guidoni, H. Dau, Nature 2023, 617, 623–628, 10.1038/s41586-023-06008-5
  • Stepwise conversion of the Cys [4Fe-3S] to a Cys [4Fe-4S] cluster and its impact on oxygen tolerance of [NiFe]-hydrogenase, A. Schmidt, J. Kalms, C. Lorent, S. Katz, S. Frielingsdorf, R. M. Evans, J. Fritsch, E. Siebert, C. Teutloff, F. A. Armstrong, I. Zebger, O. Lenz, P. Scheerer, Chemical Science 2023, 10.1039/D3SC03739H
  • Biotechnological perspective for wireless energy: H2-based power extraction from air, S. Frielingsdorf, Trends in Biochemical Sciences 2023, 48, 659–661, 10.1016/j.tibs.2023.05.006
  • Discovery of the Lanthipeptide Curvocidin and Structural Insights into its Trifunctional Synthetase CuvL, A. Sigurdsson, B. M. Martins, S. A. Düttmann, M. Jasyk, B. Dimos‐Röhl, F. Schöpf, M. Gemander, C. H. Knittel, R. Schnegotzki, B. Schmid, S. Kosol, L. Pommerening, M. Gonzáles‐Viegaz, M. Seidel, M. Hügelland, S. Leimkühler, H. Dobbek, A. Mainz, R. D. Süssmuth, Angewandte Chemie International Edition 2023, 62, 1–11, 10.1002/anie.202302490
  • Changing the Electron Acceptor Specificity of Rhodobacter capsulatus Formate Dehydrogenase from NAD+ to NADP+, H. Kumar, S. Leimkühler, International Journal of Molecular Sciences 2023, 24, 16067–0, 10.3390/ijms242216067
  • Metal-Containing Formate Dehydrogenases, a Personal View, S. Leimkühler, Molecules 2023, 28, 5338–0, 10.3390/molecules28145338
  • The Mechanism of Metal-Containing Formate Dehydrogenases Revisited: The Formation of Bicarbonate as Product Intermediate Provides Evidence for an Oxygen Atom Transfer Mechanism, H. Kumar, M. Khosraneh, S. S. M. Bandaru, C. Schulzke, S. Leimkühler, Molecules 2023, 28, 1537–0, 10.3390/molecules28041537
  • Refined definition of the critical micelle concentration and application to alkyl maltosides used in membrane protein research, A. Bothe, A. Zouni, F. Müh, RSC Advances 2023, 13, 9387–9401, 10.1039/D2RA07440K
  • Applicability of Transition State Theory to the (Proton-Coupled) Electron Transfer in Photosynthetic Water Oxidation with Emphasis on the Entropy of Activation, H. Dau, P. Greife, Inorganics 2023, 11, 389–0, 10.3390/inorganics11100389
  • Peptidomics, R. Hellinger, A. Sigurdsson, W. Wu, E. V. Romanova, L. Li, J. V. Sweedler, R. D. Süssmuth, C. W. Gruber, Nature Reviews Methods Primers 2023, 3, 10.1038/s43586-023-00205-2
  • Unusual structures and unknown roles of FeS clusters in metalloenzymes seen from a resonance Raman spectroscopic perspective, G. Caserta, L. Zuccarello, C. Barbosa, C. M. Silveira, E. Moe, S. Katz, P. Hildebrandt, I. Zebger, S. Todorovic, Coordination Chemistry Reviews 2022, 452, 214287–0, 10.1016/j.ccr.2021.214287
  • A Morphing [4Fe‐3S‐nO]‐Cluster within a Carbon Monoxide Dehydrogenase Scaffold, J. Jeoung, J. Fesseler, L. Domnik, F. Klemke, M. Sinnreich, C. Teutloff, H. Dobbek, Angewandte Chemie International Edition 2022, 10.1002/anie.202117000
  • Structural basis for coupled ATP-driven electron transfer in the double-cubane cluster protein, J. H. Jeoung, S. Nicklisch, H. Dobbek, Proceedings of the National Academy of Sciences 2022, 119, 10.1073/pnas.2203576119
  • On the Kinetics of CO Reduction by Ni, Fe-CO Dehydrogenases, J. Ruickoldt, Y. Basak, L. Domnik, J. H. Jeoung, H. Dobbek, ACS Catalysis 2022, 13131–13142, 10.1021/acscatal.2c02221
  • Substrate Activation at the Ni,Fe Cluster of CO Dehydrogenases: The Influence of the Protein Matrix, Y. Basak, J. H. Jeoung, L. Domnik, J. Ruickoldt, H. Dobbek, ACS Catalysis 2022, 12711–12719, 10.1021/acscatal.2c02922
  • Reversible Glutamate Coordination to High-Valent Nickel Protects the Active Site of a [NiFe] Hydrogenase from Oxygen, C. J. Kulka-Peschke, A. C. Schulz, C. Lorent, Y. Rippers, S. Wahlefeld, J. Preissler, C. Schulz, C. Wiemann, C. C. M. Bernitzky, C. Karafoulidi-Retsou, S. L. D. Wrathall, B. Procacci, H. Matsuura, G. M. Greetham, C. Teutloff, L. Lauterbach, Y. Higuchi, M. Ishii, N. T. Hunt, O. Lenz, I. Zebger, M. Horch, Journal of the American Chemical Society 2022, 144, 17022–17032, 10.1021/jacs.2c06400
  • A Minimal Light‐Driven System to Study the Enzymatic CO Reduction of Formate Dehydrogenase, K. Laun, B. R. Duffus, H. Kumar, J. H. Oudsen, C. Karafoulidi‐Retsou, A. Tadjoung Waffo, P. Hildebrandt, K. Hoang Ly, S. Leimkühler, S. Katz, I. Zebger, ChemCatChem 2022, 14, 10.1002/cctc.202201067
  • Understanding 2D-IR Spectra of Hydrogenases: A Descriptive and Predictive Computational Study, Y. Rippers, B. Procacci, N. T. Hunt, M. Horch, Catalysts 2022, 12, 988–0, 10.3390/catal12090988
  • Ultrafast 2D-IR spectroscopy of [NiFe] hydrogenase from reveals the role of the protein scaffold in controlling the active site environment, S. L. D. Wrathall, B. Procacci, M. Horch, E. Saxton, C. Furlan, J. Walton, Y. Rippers, J. N. Blaza, G. M. Greetham, M. Towrie, A. W. Parker, J. Lynam, A. Parkin, N. T. Hunt, Physical Chemistry Chemical Physics 2022, 24, 24767–24783, 10.1039/d2cp04188j
  • Human endonuclease III/NTH1: focusing on the [4Fe–4S] cluster and the N-terminal domain, E. Moe, C. M. Silveira, L. Zuccarello, F. Rollo, M. Stelter, S. De Bonis, C. Kulka-Peschke, S. Katz, P. Hildebrandt, I. Zebger, J. Timmins, S. Todorovic, Chemical Communications 2022, 58, 12568–12571, 10.1039/D2CC03643F
  • Electron transfer between cytochrome c and microsomal monooxygenase generates reactive oxygen species that accelerates apoptosis, H. Xie, L. Song, S. Katz, J. Zhu, Y. Liu, J. Tang, L. Cai, P. Hildebrandt, X. X. Han, Redox Biology 2022, 53, 102340–0, 10.1016/j.redox.2022.102340
  • Advances in computational methods for ligand binding kinetics, F. Sohraby, A. Nunes-Alves, Trends in Biochemical Sciences 2022, 10.1016/j.tibs.2022.11.003
  • Does Tyrosine Protect Laccase from Oxidative Degradation or Act as an Extended Catalytic Site?, P. J. Kielb, C. Teutloff, R. Bittl, H. B. Gray, J. R. Winkler, The Journal of Physical Chemistry B 2022, 126, 7943–7949, 10.1021/acs.jpcb.2c04835
  • Structural and electronic properties of the active site of [ZnFe] SulE, S. Moubarak, Y. Rippers, N. Elghobashi-Meinhardt, M. A. Mroginski, Frontiers in Molecular Biosciences 2022, 9, 10.3389/fmolb.2022.945415
  • A hydrogen-driven biocatalytic approach to recycling synthetic analogues of NAD(P)H, H. A. Reeve, J. Nicholson, F. Altaf, T. H. Lonsdale, J. Preissler, L. Lauterbach, O. Lenz, S. Leimkühler, F. Hollmann, C. E. Paul, K. A. Vincent, Chemical Communications 2022, 58, 10540–10543, 10.1039/d2cc02411j
  • Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase, S. T. Stripp, B. R. Duffus, V. Fourmond, C. Léger, S. Leimkühler, S. Hirota, Y. Hu, A. Jasniewski, H. Ogata, M. W. Ribbe, Chemical Reviews 2022, 122, 11900–11973, 10.1021/acs.chemrev.1c00914
  • Infrared Spectroscopy Elucidates the Inhibitor Binding Sites in a Metal‐Dependent Formate Dehydrogenase, K. Laun, B. R. Duffus, S. Wahlefeld, S. Katz, D. Belger, P. Hildebrandt, M. A. Mroginski, S. Leimkühler, I. Zebger, Chemistry – A European Journal 2022, 28, 10.1002/chem.202201091
  • Substrate-Dependent Conformational Switch of the Noncubane [4Fe-4S] Cluster in Heterodisulfide Reductase HdrB, V. Pelmenschikov, D. Ferreira, S. S. Venceslau, P. Hildebrandt, I. A. C. Pereira, S. Todorovic, Journal of the American Chemical Society 2022, 145, 7–11, 10.1021/jacs.2c10885
  • Mechanisms and inhibition of Porcupine-mediated Wnt acylation, Y. Liu, X. Qi, L. Donnelly, N. Elghobashi-Meinhardt, T. Long, R. W. Zhou, Y. Sun, B. Wang, X. Li, Nature 2022, 607, 816–822, 10.1038/s41586-022-04952-2
  • Catalytic and Spectroscopic Properties of the Halotolerant Soluble Methane Monooxygenase Reductase from MC09, E. Lettau, D. Zill, M. Späth, C. Lorent, P. K. Singh, L. Lauterbach, ChemBioChem 2022, 23, 202100592–0, 10.1002/cbic.202100592
  • Vibrational Perturbation of the [FeFe] Hydrogenase H-Cluster Revealed by 13C2H-ADT Labeling, V. Pelmenschikov, J. A. Birrell, L. B. Gee, C. P. Richers, E. J. Reijerse, H. Wang, S. Arragain, N. Mishra, Y. Yoda, H. Matsuura, L. Li, K. Tamasaku, T. B. Rauchfuss, W. Lubitz, S. P. Cramer, Journal of the American Chemical Society 2021, 143, 8237–8243, 10.1021/jacs.1c02323
  • Exploring Structure and Function of Redox Intermediates in [NiFe]‐Hydrogenases by an Advanced Experimental Approach for Solvated, Lyophilized and Crystallized Metalloenzymes, C. Lorent, V. Pelmenschikov, S. Frielingsdorf, J. Schoknecht, G. Caserta, Y. Yoda, H. Wang, K. Tamasaku, O. Lenz, S. P. Cramer, M. Horch, L. Lauterbach, I. Zebger, Angewandte Chemie International Edition 2021, 60, 15854–15862, 10.1002/anie.202100451
  • NRVS and DFT of MitoNEET: Understanding the Special Vibrational Structure of a [2Fe-2S] Cluster with (Cys)3(His)1 Ligation, L. B. Gee, V. Pelmenschikov, C. Mons, N. Mishra, H. Wang, Y. Yoda, K. Tamasaku, M. P. Golinelli-Cohen, S. P. Cramer, Biochemistry 2021, 60, 2419–2424, 10.1021/acs.biochem.1c00252
  • Resonance Raman spectroscopic analysis of the iron–sulfur cluster redox chain of the membrane‐bound [NiFe]‐hydrogenase, E. Siebert, A. Schmidt, S. Frielingsdorf, J. Kalms, U. Kuhlmann, O. Lenz, P. Scheerer, I. Zebger, P. Hildebrandt, Journal of Raman Spectroscopy 2021, 10.1002/jrs.6163
  • Room temperature XFEL crystallography reveals asymmetry in the vicinity of the two phylloquinones in photosystem I, S. M. Keable, A. Kölsch, P. S. Simon, M. Dasgupta, R. Chatterjee, S. K. Subramanian, R. Hussein, M. Ibrahim, I. S. Kim, I. Bogacz, H. Makita, C. C. Pham, F. D. Fuller, S. Gul, D. Paley, L. Lassalle, K. D. Sutherlin, A. Bhowmick, N. W. Moriarty, I. D. Young, J. P. Blaschke, C. de Lichtenberg, P. Chernev, M. H. Cheah, S. Park, G. Park, J. Kim, S. J. Lee, J. Park, K. Tono, S. Owada, M. S. Hunter, A. Batyuk, R. Oggenfuss, M. Sander, S. Zerdane, D. Ozerov, K. Nass, H. Lemke, R. Mankowsky, A. S. Brewster, J. Messinger, N. K. Sauter, V. K. Yachandra, J. Yano, A. Zouni, J. Kern, Scientific Reports 2021, 11, 10.1038/s41598-021-00236-3
  • Scalable Three-Dimensional Photobioelectrodes Made of Reduced Graphene Oxide Combined with Photosystem I, S. Morlock, S. K. Subramanian, A. Zouni, F. Lisdat, ACS Applied Materials & Interfaces 2021, 13, 11237–11246, 10.1021/acsami.1c01142
  • Insights into Solution Structures of Photosynthetic Protein Complexes from Small-Angle Scattering Methods, M. Golub, A. Kölsch, A. Feoktystov, A. Zouni, J. Pieper, Crystals 2021, 11, 203–0, 10.3390/cryst11020203
  • Hydroxy-bridged resting states of a [NiFe]-hydrogenase unraveled by cryogenic vibrational spectroscopy and DFT computations, G. Caserta, V. Pelmenschikov, C. Lorent, A. F. Tadjoung Waffo, S. Katz, L. Lauterbach, J. Schoknecht, H. Wang, Y. Yoda, K. Tamasaku, M. Kaupp, P. Hildebrandt, O. Lenz, S. P. Cramer, I. Zebger, Chemical Science 2021, 12, 2189–2197, 10.1039/D0SC05022A
  • ATP Binding and a Second Reduction Enables a Conformationally Gated Uphill Electron Transfer, F. Neumann, H. Dobbek, ACS Catalysis 2021, 11, 8565–8575, 10.1021/acscatal.1c01038
  • Molecular Details on Multiple Cofactor Containing Redox Metalloproteins Revealed by Infrared and Resonance Raman Spectroscopies, C. M. Silveira, L. Zuccarello, C. Barbosa, G. Caserta, I. Zebger, P. Hildebrandt, S. Todorovic, Molecules 2021, 26, 4852–0, 10.3390/molecules26164852
  • Stable, but still reactive – investigations on the effects of Lewis acid binding on copper nitrene intermediates, K. Warm, I. Monte Pérez, U. Kuhlmann, P. Hildebrandt, E. Farquhar, M. Swart, K. Ray, Zeitschrift für Anorganische und Allgemeine Chemie 2021, 647, 1495–1502, 10.1002/zaac.202100092
  • Electronic and Structural Properties of the Double Cubane Iron-Sulfur Cluster, N. Elghobashi-Meinhardt, D. Tombolelli, M. A. Mroginski, Catalysts 2021, 11, 245–0, 10.3390/catal11020245
  • A Resonance Raman Marker Band Characterizes the Slow and Fast Form of Cytochrome Oxidase, F. Kruse, A. D. Nguyen, J. Dragelj, J. Heberle, P. Hildebrandt, M. A. Mroginski, I. M. Weidinger, Journal of the American Chemical Society 2021, 143, 2769–2776, 10.1021/jacs.0c10767
  • Electrochemical Trimethylamine N-Oxide Biosensor with Enzyme-Based Oxygen-Scavenging Membrane for Long-Term Operation under Ambient Air, A. F. T. Waffo, B. Mitrova, K. Tiedemann, C. Iobbi-Nivol, S. Leimkühler, U. Wollenberger, Biosensors 2021, 11, 98–0, 10.3390/bios11040098
  • Voltammetry and Single‐Molecule In Situ Scanning Tunnelling Microscopy of the Redox Metalloenzyme Human Sulfite Oxidase, J. Yan, E. E. Frøkjær, C. Engelbrekt, S. Leimkühler, J. Ulstrup, U. Wollenberger, X. Xiao, J. Zhang, ChemElectroChem 2021, 8, 164–171, 10.1002/celc.202001258
  • Tuning the Quantum Chemical Properties of Flavins via Modification at C8, R. K. Kar, S. Chasen, M. A. Mroginski, A. F. Miller, The Journal of Physical Chemistry B 2021, 125, 12654–12669, 10.1021/acs.jpcb.1c07306
  • Understanding flavin electronic structure and spectra, R. K. Kar, A. Miller, M. Mroginski, WIREs Computational Molecular Science 2021, 12, 1541–0, 10.1002/wcms.1541
  • Beating Heart of Cytochrome Oxidase: The Shared Proton of Heme Propionates, J. Dragelj, M. A. Mroginski, E. W. Knapp, The Journal of Physical Chemistry B 2021, 125, 9668–9677, 10.1021/acs.jpcb.1c03619
  • Rewiring cyanobacterial photosynthesis by the implementation of an oxygen-tolerant hydrogenase, S. Lupacchini, J. Appel, R. Stauder, P. Bolay, S. Klähn, E. Lettau, L. Adrian, L. Lauterbach, B. Bühler, A. Schmid, J. Toepel, Metabolic Engineering 2021, 68, 199–209, 10.1016/j.ymben.2021.10.006
  • Probing the Structure of [NiFeSe] Hydrogenase with QM/MM Computations, S. Moubarak, N. Elghobashi-Meinhardt, D. Tombolelli, M. A. Mroginski, Applied Sciences 2020, 10, 781–0, 10.3390/app10030781
  • Caught in the H : Crystal Structure and Spectroscopy Reveal a Sulfur Bound to the Active Site of an O ‐stable State of [FeFe] Hydrogenase, P. Rodríguez‐Maciá, L. M. Galle, R. Bjornsson, C. Lorent, I. Zebger, Y. Yoda, S. P. Cramer, S. DeBeer, I. Span, J. A. Birrell, Angewandte Chemie International Edition 2020, 10.1002/anie.202005208
  • Phosphoglycolate salvage in a chemolithoautotroph using the Calvin cycle, N. J. Claassens, G. Scarinci, A. Fischer, A. I. Flamholz, W. Newell, S. Frielingsdorf, O. Lenz, A. Bar-Even, Proceedings of the National Academy of Sciences 2020, 117, 22452–22461, 10.1073/pnas.2012288117
  • Dihydrogen‐Driven NADPH Recycling in Imine Reduction and P450‐Catalyzed Oxidations Mediated by an Engineered O ‐Tolerant Hydrogenase, J. Preissler, H. A. Reeve, T. Zhu, J. Nicholson, K. Urata, L. Lauterbach, L. L. Wong, K. A. Vincent, O. Lenz, ChemCatChem 2020, 10.1002/cctc.202000763
  • The large subunit of the regulatory [NiFe]-hydrogenase from – a minimal hydrogenase?, G. Caserta, C. Lorent, A. Ciaccafava, M. Keck, R. Breglia, C. Greco, C. Limberg, P. Hildebrandt, S. P. Cramer, I. Zebger, O. Lenz, Chemical Science 2020, 11, 5453–5465, 10.1039/D0SC01369B
  • A membrane‐bound [NiFe]‐hydrogenase large subunit precursor whose C‐terminal extension is not essential for cofactor incorporation but guarantees optimal maturation, S. Hartmann, S. Frielingsdorf, G. Caserta, O. Lenz, MicrobiologyOpen 2020, 9, 1197–1206, 10.1002/mbo3.1029
  • Bringing biocatalytic deuteration into the toolbox of asymmetric isotopic labelling techniques, J. S. Rowbotham, M. A. Ramirez, O. Lenz, H. A. Reeve, K. A. Vincent, Nature Communications 2020, 11, 10.1038/s41467-020-15310-z
  • [FeFe]-hydrogenase maturation: H-cluster assembly intermediates tracked by electron paramagnetic resonance, infrared, and X-ray absorption spectroscopy, B. Németh, M. Senger, H. J. Redman, P. Ceccaldi, J. Broderick, A. Magnuson, S. T. Stripp, M. Haumann, G. Berggren, JBIC Journal of Biological Inorganic Chemistry 2020, 25, 777–788, 10.1007/s00775-020-01799-8
  • Assessment of the manganese cluster’s oxidation state via photoactivation of photosystem II microcrystals, M. H. Cheah, M. Zhang, D. Shevela, F. Mamedov, A. Zouni, J. Messinger, Proceedings of the National Academy of Sciences 2020, 117, 141–145, 10.1073/pnas.1915879117
  • Electrochemical Biosensors Employing Natural and Artificial Heme Peroxidases on Semiconductors, B. Neumann, U. Wollenberger, Sensors 2020, 20, 3692–0, 10.3390/s20133692
  • Shedding Light on Proton and Electron Dynamics in [FeFe] Hydrogenases, C. Lorent, S. Katz, J. Duan, C. J. Kulka, G. Caserta, C. Teutloff, S. Yadav, U. P. Apfel, M. Winkler, T. Happe, M. Horch, I. Zebger, Journal of the American Chemical Society 2020, 142, 5493–5497, 10.1021/jacs.9b13075
  • Cryo-EM structures reveal intricate Fe-S cluster arrangement and charging in Rhodobacter capsulatus formate dehydrogenase, C. Radon, G. Mittelstädt, B. R. Duffus, J. Bürger, T. Hartmann, T. Mielke, C. Teutloff, S. Leimkühler, P. Wendler, Nature Communications 2020, 11, 10.1038/s41467-020-15614-0
  • In Vitro Assembly as a Tool to Investigate Catalytic Intermediates of [NiFe]-Hydrogenase, G. Caserta, C. Lorent, V. Pelmenschikov, J. Schoknecht, Y. Yoda, P. Hildebrandt, S. P. Cramer, I. Zebger, O. Lenz, ACS Catalysis 2020, 10, 13890–13894, 10.1021/acscatal.0c04079
  • Combining free energy calculations with tailored enzyme activity assays to elucidate substrate binding of a phospho-lysine phosphatase, A. Hauser, S. Hwang, H. Sun, C. P. R. Hackenberger, Chemical Science 2020, 11, 12655–12661, 10.1039/D0SC03930F
  • Picometer Resolution Structure of the Coordination Sphere in the Metal-Binding Site in a Metalloprotein by NMR, A. Bertarello, L. Benda, K. J. Sanders, A. J. Pell, M. J. Knight, V. Pelmenschikov, L. Gonnelli, I. C. Felli, M. Kaupp, L. Emsley, R. Pierattelli, G. Pintacuda, Journal of the American Chemical Society 2020, 142, 16757–16765, 10.1021/jacs.0c07339
  • The two CO-dehydrogenases of Thermococcus sp. AM4, M. Benvenuti, M. Meneghello, C. Guendon, A. Jacq-Bailly, J. H. Jeoung, H. Dobbek, C. Léger, V. Fourmond, S. Dementin, Biochimica et Biophysica Acta (BBA) - Bioenergetics 2020, 1861, 148188–0, 10.1016/j.bbabio.2020.148188
  • Double‐Cubane [8Fe9S] Clusters: A Novel Nitrogenase‐Related Cofactor in Biology, J. Jeoung, B. M. Martins, H. Dobbek, ChemBioChem 2020, 21, 1710–1716, 10.1002/cbic.202000016
  • Hydrogen Development, U. P. Apfel, W. Weigand, M. Horch, I. Zebger, O. Lenz, T. Fujishiro in Bioorganometallic Chemistry (Hrsg.: Wolfgang Weigand, Ulf-Peter Apfel), De Gruyter, 2020, 13–136, ISBN: 9783110496505
  • Immobilized dye-decolorizing peroxidase (DyP) and directed evolution variants for hydrogen peroxide biosensing, C. Barbosa, C. M. Silveira, D. Silva, V. Brissos, P. Hildebrandt, L. O. Martins, S. Todorovic, Biosensors and Bioelectronics 2020, 153, 112055–0, 10.1016/j.bios.2020.112055
  • QM/MM computations reveal details of the acetyl-CoA synthase catalytic center, N. Elghobashi-Meinhardt, D. Tombolelli, M. A. Mroginski, Biochimica et Biophysica Acta (BBA) - General Subjects 2020, 1864, 129579–0, 10.1016/j.bbagen.2020.129579
  • Thermodynamic Reaction Control of Nucleoside Phosphorolysis, F. Kaspar, R. T. Giessmann, P. Neubauer, A. Wagner, M. Gimpel, Advanced Synthesis & Catalysis 2020, 362, 867–876, 10.1002/adsc.201901230
  • General Principles for Yield Optimization of Nucleoside Phosphorylase‐Catalyzed Transglycosylations, F. Kaspar, R. T. Giessmann, K. F. Hellendahl, P. Neubauer, A. Wagner, M. Gimpel, ChemBioChem 2020, 21, 1428–1432, 10.1002/cbic.201900740
  • Efficient Biocatalytic Synthesis of Dihalogenated Purine Nucleoside Analogues Applying Thermodynamic Calculations, H. Yehia, S. Westarp, V. Röhrs, F. Kaspar, R. T. Giessmann, H. F. T. Klare, K. Paulick, P. Neubauer, J. Kurreck, A. Wagner, Molecules 2020, 25, 934–0, 10.3390/molecules25040934
  • Spectral Unmixing‐Based Reaction Monitoring of Transformations between Nucleosides and Nucleobases, F. Kaspar, R. T. Giessmann, S. Westarp, K. F. Hellendahl, N. Krausch, I. Thiele, M. C. Walczak, P. Neubauer, A. Wagner, ChemBioChem 2020, 21, 2604–2610, 10.1002/cbic.202000204
  • Matters of class: coming of age of class III and IV lanthipeptides, J. D. Hegemann, R. D. Süssmuth, RSC Chemical Biology 2020, 1, 110–127, 10.1039/d0cb00073f
  • Current limits of structural biology: The transient interaction between cytochrome c and photosystem I, A. Kölsch, C. Radon, M. Golub, A. Baumert, J. Bürger, T. Mielke, F. Lisdat, A. Feoktystov, J. Pieper, A. Zouni, P. Wendler, Current Research in Structural Biology 2020, 2, 171–179, 10.1016/j.crstbi.2020.08.003
  • H2 as a fuel for flavin- and H2O2-dependent biocatalytic reactions, A. Al-Shameri, S. J. P. Willot, C. E. Paul, F. Hollmann, L. Lauterbach, Chemical Communications 2020, 56, 9667–9670, 10.1039/D0CC03229H
  • Powering Artificial Enzymatic Cascades with Electrical Energy, A. Al‐Shameri, M. Petrich, K. junge Puring, U. Apfel, B. M. Nestl, L. Lauterbach, Angewandte Chemie International Edition 2020, 59, 10929–10933, 10.1002/anie.202001302
  • Proton Transfer Pathways between Active Sites and Proximal Clusters in the Membrane-Bound [NiFe] Hydrogenase, D. Tombolelli, M. A. Mroginski, The Journal of Physical Chemistry B 2019, 123, 3409–3420, 10.1021/acs.jpcb.9b00617
  • Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy, D. Buhrke, P. Hildebrandt, Chemical Reviews 2019, 120, 3577–3630, 10.1021/acs.chemrev.9b00429
  • Formyltetrahydrofolate Decarbonylase Synthesizes the Active Site CO Ligand of O -Tolerant [NiFe] Hydrogenase, A. C. Schulz, S. Frielingsdorf, P. Pommerening, L. Lauterbach, G. Bistoni, F. Neese, M. Oestreich, O. Lenz, Journal of the American Chemical Society 2019, 142, 1457–1464, 10.1021/jacs.9b11506
  • Geometry of the Catalytic Active Site in [FeFe]-Hydrogenase Is Determined by Hydrogen Bonding and Proton Transfer, J. Duan, S. Mebs, K. Laun, F. Wittkamp, J. Heberle, T. Happe, E. Hofmann, U. P. Apfel, M. Winkler, M. Senger, M. Haumann, S. T. Stripp, ACS Catalysis 2019, 9, 9140–9149, 10.1021/acscatal.9b02203
  • Unlocking the Spatial Control of Secondary Metabolism Uncovers Hidden Natural Product Diversity in, D. Dehm, J. Krumbholz, M. Baunach, V. Wiebach, K. Hinrichs, A. Guljamow, T. Tabuchi, H. Jenke-Kodama, R. D. Süssmuth, E. Dittmann, ACS Chemical Biology 2019, 14, 1271–1279, 10.1021/acschembio.9b00240
  • Total Synthesis of the Death Cap Toxin Phalloidin: Atropoisomer Selectivity Explained by Molecular‐Dynamics Simulations, G. Yao, J. Joswig, B. G. Keller, R. D. Süssmuth, Chemistry – A European Journal 2019, 25, 8030–8034, 10.1002/chem.201901888
  • Spectroscopic and Computational Evidence that [FeFe] Hydrogenases Operate Exclusively with CO-Bridged Intermediates, J. A. Birrell, V. Pelmenschikov, N. Mishra, H. Wang, Y. Yoda, K. Tamasaku, T. B. Rauchfuss, S. P. Cramer, W. Lubitz, S. DeBeer, Journal of the American Chemical Society 2019, 142, 222–232, 10.1021/jacs.9b09745
  • X‐ray Crystallography and Vibrational Spectroscopy Reveal the Key Determinants of Biocatalytic Dihydrogen Cycling by [NiFe] Hydrogenases, Y. Ilina, C. Lorent, S. Katz, J. Jeoung, S. Shima, M. Horch, I. Zebger, H. Dobbek, Angewandte Chemie International Edition 2019, 58, 18710–18714, 10.1002/anie.201908258
  • Synthesis of -heterocycles from diamines H -driven NADPH recycling in the presence of O, A. Al-Shameri, N. Borlinghaus, L. Weinmann, P. N. Scheller, B. M. Nestl, L. Lauterbach, Green Chemistry 2019, 21, 1396–1400, 10.1039/C8GC03798A
  • Understanding the structure and dynamics of hydrogenases by ultrafast and two-dimensional infrared spectroscopy, M. Horch, J. Schoknecht, S. L. D. Wrathall, G. M. Greetham, O. Lenz, N. T. Hunt, Chemical Science 2019, 10, 8981–8989, 10.1039/C9SC02851J
  • Discriminating changes in intracellular NADH/NAD+ levels due to anoxicity and H2 supply in R. eutropha cells using the Frex fluorescence sensor, S. Wilkening, F. J. Schmitt, O. Lenz, I. Zebger, M. Horch, T. Friedrich, Biochimica et Biophysica Acta (BBA) - Bioenergetics 2019, 1860, 148062–0, 10.1016/j.bbabio.2019.148062
  • A UV/Vis Spectroscopy-Based Assay for Monitoring of Transformations Between Nucleosides and Nucleobases, F. Kaspar, R. T. Giessmann, N. Krausch, P. Neubauer, A. Wagner, M. Gimpel, Methods and Protocols 2019, 2, 60–0, 10.3390/mps2030060
  • Dynamic Modelling of Phosphorolytic Cleavage Catalyzed by Pyrimidine-Nucleoside Phosphorylase, R. T. Giessmann, N. Krausch, F. Kaspar, M. N. Cruz Bournazou, A. Wagner, P. Neubauer, M. Gimpel, Processes 2019, 7, 380–0, 10.3390/pr7060380